Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
J Intensive Care ; 11(1): 21, 2023 May 19.
Article in English | MEDLINE | ID: covidwho-2324935

ABSTRACT

BACKGROUND: Long-term outcomes of patients treated with helmet noninvasive ventilation (NIV) are unknown: safety concerns regarding the risk of patient self-inflicted lung injury and delayed intubation exist when NIV is applied in hypoxemic patients. We assessed the 6-month outcome of patients who received helmet NIV or high-flow nasal oxygen for COVID-19 hypoxemic respiratory failure. METHODS: In this prespecified analysis of a randomized trial of helmet NIV versus high-flow nasal oxygen (HENIVOT), clinical status, physical performance (6-min-walking-test and 30-s chair stand test), respiratory function and quality of life (EuroQoL five dimensions five levels questionnaire, EuroQoL VAS, SF36 and Post-Traumatic Stress Disorder Checklist for the DSM) were evaluated 6 months after the enrollment. RESULTS: Among 80 patients who were alive, 71 (89%) completed the follow-up: 35 had received helmet NIV, 36 high-flow oxygen. There was no inter-group difference in any item concerning vital signs (N = 4), physical performance (N = 18), respiratory function (N = 27), quality of life (N = 21) and laboratory tests (N = 15). Arthralgia was significantly lower in the helmet group (16% vs. 55%, p = 0.002). Fifty-two percent of patients in helmet group vs. 63% of patients in high-flow group had diffusing capacity of the lungs for carbon monoxide < 80% of predicted (p = 0.44); 13% vs. 22% had forced vital capacity < 80% of predicted (p = 0.51). Both groups reported similar degree of pain (p = 0.81) and anxiety (p = 0.81) at the EQ-5D-5L test; the EQ-VAS score was similar in the two groups (p = 0.27). Compared to patients who successfully avoided invasive mechanical ventilation (54/71, 76%), intubated patients (17/71, 24%) had significantly worse pulmonary function (median diffusing capacity of the lungs for carbon monoxide 66% [Interquartile range: 47-77] of predicted vs. 80% [71-88], p = 0.005) and decreased quality of life (EQ-VAS: 70 [53-70] vs. 80 [70-83], p = 0.01). CONCLUSIONS: In patients with COVID-19 hypoxemic respiratory failure, treatment with helmet NIV or high-flow oxygen yielded similar quality of life and functional outcome at 6 months. The need for invasive mechanical ventilation was associated with worse outcomes. These data indicate that helmet NIV, as applied in the HENIVOT trial, can be safely used in hypoxemic patients. Trial registration Registered on clinicaltrials.gov NCT04502576 on August 6, 2020.

2.
Front Immunol ; 14: 1085610, 2023.
Article in English | MEDLINE | ID: covidwho-2323111

ABSTRACT

Introduction: Extracellular vesicles (EVs) and particles (EPs) represent reliable biomarkers for disease detection. Their role in the inflammatory microenvironment of severe COVID-19 patients is not well determined. Here, we characterized the immunophenotype, the lipidomic cargo and the functional activity of circulating EPs from severe COVID-19 patients (Co-19-EPs) and healthy controls (HC-EPs) correlating the data with the clinical parameters including the partial pressure of oxygen to fraction of inspired oxygen ratio (PaO2/FiO2) and the sequential organ failure assessment (SOFA) score. Methods: Peripheral blood (PB) was collected from COVID-19 patients (n=10) and HC (n=10). EPs were purified from platelet-poor plasma by size exclusion chromatography (SEC) and ultrafiltration. Plasma cytokines and EPs were characterized by multiplex bead-based assay. Quantitative lipidomic profiling of EPs was performed by liquid chromatography/mass spectrometry combined with quadrupole time-of-flight (LC/MS Q-TOF). Innate lymphoid cells (ILC) were characterized by flow cytometry after co-cultures with HC-EPs or Co-19-EPs. Results: We observed that EPs from severe COVID-19 patients: 1) display an altered surface signature as assessed by multiplex protein analysis; 2) are characterized by distinct lipidomic profiling; 3) show correlations between lipidomic profiling and disease aggressiveness scores; 4) fail to dampen type 2 innate lymphoid cells (ILC2) cytokine secretion. As a consequence, ILC2 from severe COVID-19 patients show a more activated phenotype due to the presence of Co-19-EPs. Discussion: In summary, these data highlight that abnormal circulating EPs promote ILC2-driven inflammatory signals in severe COVID-19 patients and support further exploration to unravel the role of EPs (and EVs) in COVID-19 pathogenesis.


Subject(s)
COVID-19 , Humans , Immunity, Innate , Lymphocytes , Cytokines , Oxygen
5.
Artif Organs ; 2022 Nov 17.
Article in English | MEDLINE | ID: covidwho-2251811

ABSTRACT

BACKGROUND: Veno-venous extracorporeal life support (V-V ECLS or V-V ECMO) has been adopted as a rescue support in severe cases of COVID-19 ARDS. Initial reports on the use of V-V ECLS in COVID-19 patients reported very high mortality rates (57%-94%), but subsequent studies showed much lower rates (30%-40%). The aim of this study is to analyze demographic features, clinical course and outcomes of COVID-19 treated with V-V ECLS during the Italian 'third wave', in which the alpha variant was prevalent in the country. METHODS: Single-center, retrospective observational study conducted at the ECLS referral center of a teaching hospital in Italy from January 1st, 2021 and October 31st, 2021. RESULTS: Between January and October 2021, 18 consecutive adult patients who underwent V-V ECLS for severe ARDS due to COVID-19 were enrolled. Thirteen patients (72.2%) were male, and their median age was 50 years; the median P/F ratio before V-V ECLS initiation was 43 mm Hg (IQR, 40; 56), and the median RESP score was 0.5 (IQR, -2.25; 1.0). The mortality rate at 90 days was 55.6, compared to 55.7% in non-COVID patients in our center (p > 0.05); the median duration of ECLS was 29 days (IQR, 11; 32), compared to 10 days (IQR, 8; 15), in non-COVID patients (p = 0.004). Incidence of complications was high. CONCLUSIONS: In patients with COVID-19 ARDS receiving V-V ECLS, unadjusted mortality was similar to pre-pandemic V-V ECLS cases, while the duration of ECLS was almost three times longer and with frequent complications. This could be partly explained by the selection of very sick patients at the baseline that evolved to multiorgan failure during the course of ECLS.

6.
Respir Care ; 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-2229406

ABSTRACT

BACKGROUND: Environmental contamination by SARS-CoV-2 from patients with COVID-19 undergoing noninvasive ventilation (NIV) in the ICU is still under investigation. This study set out to investigate the presence of SARS-CoV-2 on surfaces near subjects receiving NIV in the ICU under controlled conditions (ie, use of dual-limb circuits, filters, adequate room ventilation). METHODS: This was a single-center, prospective, observational study in the ICU of a tertiary teaching hospital. Four surface sampling areas, at increasing distance from subject's face, were identified; and each one was sampled at fixed intervals: 6, 12, and 24 h. The presence of SARS-CoV-2 was detected with real-time reverse transcriptase-polymerase-chain-reaction (RT-PCR) test on environmental swabs; the RT-PCR assay targeted the SARS-CoV-2 virus nucleocapsid N1 and N2 genes and the human RNase P gene as internal control. RESULTS: In a total of 256 collected samples, none were positive for SARS-CoV-2 genetic material, whereas 21 samples (8.2%) tested positive for RNase P, thus demonstrating the presence of genetic material unrelated to SARS-CoV-2. CONCLUSIONS: Our data show that application of NIV in an appropriate environment and with correct precautions leads to no sign of surface environmental contamination. Accordingly, our data support the idea that use of NIV in the ICU is safe both for health care workers and for other patients.

7.
ASAIO J ; 2022 Aug 23.
Article in English | MEDLINE | ID: covidwho-2227279

ABSTRACT

The aim of this retrospective multicenter observational study is to test the feasibility and safety of a combined extracorporeal CO2 removal (ECCO2R) plus renal replacement therapy (RRT) system to use an ultraprotective ventilator setting while maintaining (1) an effective support of renal function and (2) values of pH within the physiologic limits in a cohort of coronavirus infectious disease 2019 (COVID-19) patients. Among COVID-19 patients admitted to the intensive care unit of 9 participating hospitals, 27 patients with acute respiratory distress syndrome (ARDS) and acute kidney injury (AKI) requiring invasive mechanical ventilation undergoing ECCO2R-plus-RRT treatment were included in the analysis. The treatment allowed to reduce VT from 6.0 ± 0.6 mL/kg at baseline to 4.8 ± 0.8, 4.6 ± 1.0, and 4.3 ± 0.3 mL/kg, driving pressure (ΔP) from 19.8 ± 2.5 cm H2O to 14.8 ± 3.6, 14.38 ± 4.1 and 10.2 ± 1.6 cm H2O after 24 hours, 48 hours, and at discontinuation of ECCO2R-plus-RRT (T3), respectively (p < 0.001). PaCO2 and pH remained stable. Plasma creatinine decreased over the study period from 3.30 ± 1.27 to 1.90 ± 1.30 and 1.27 ± 0.90 mg/dL after 24 and 48 hours of treatment, respectively (p < 0.01). No patient-related events associated with the extracorporeal system were reported. These data show that in patients with COVID-19-induced ARDS and AKI, ECCO2R-plus-RRT is effective in allowing ultraprotective ventilator settings while maintaining an effective support of renal function and values of pH within physiologic limits.

8.
Radiol Med ; 127(2): 162-173, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1626023

ABSTRACT

PURPOSE: COVID-19-related acute respiratory distress syndrome (ARDS) is characterized by the presence of signs of microvascular involvement at the CT scan, such as the vascular tree in bud (TIB) and the vascular enlargement pattern (VEP). Recent evidence suggests that TIB could be associated with an increased duration of invasive mechanical ventilation (IMV) and intensive care unit (ICU) stay. The primary objective of this study was to evaluate whether microvascular involvement signs could have a prognostic significance concerning liberation from IMV. MATERIAL AND METHODS: All the COVID-19 patients requiring IMV admitted to 16 Italian ICUs and having a lung CT scan recorded within 3 days from intubation were enrolled in this secondary analysis. Radiologic, clinical and biochemical data were collected. RESULTS: A total of 139 patients affected by COVID-19 related ARDS were enrolled. After grouping based on TIB or VEP detection, we found no differences in terms of duration of IMV and mortality. Extension of VEP and TIB was significantly correlated with ground-glass opacities (GGOs) and crazy paving pattern extension. A parenchymal extent over 50% of GGO and crazy paving pattern was more frequently observed among non-survivors, while a VEP and TIB extent involving 3 or more lobes was significantly more frequent in non-responders to prone positioning. CONCLUSIONS: The presence of early CT scan signs of microvascular involvement in COVID-19 patients does not appear to be associated with differences in duration of IMV and mortality. However, patients with a high extension of VEP and TIB may have a reduced oxygenation response to prone positioning. TRIAL REGISTRATION: NCT04411459.


Subject(s)
COVID-19/diagnostic imaging , COVID-19/therapy , Microvessels/diagnostic imaging , Respiration, Artificial/methods , Tomography, X-Ray Computed/methods , Aged , Female , Humans , Intensive Care Units , Italy , Length of Stay/statistics & numerical data , Lung/diagnostic imaging , Male , Middle Aged , Prospective Studies , SARS-CoV-2
9.
Curr Opin Crit Care ; 28(1): 51-56, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1606528

ABSTRACT

PURPOSE OF REVIEW: To review current evidence on the pathophysiology of COVID-19-related acute respiratory distress syndrome (ARDS) and on the implementation of lung protective ventilation. RECENT FINDINGS: Although multiple observations and physiological studies seem to show a different pathophysiological behaviour in COVID-19-ARDS compared with 'classical' ARDS, numerous studies on thousands of patients do not confirm these findings and COVID-19-ARDS indeed shares similar characteristics and interindividual heterogeneity with ARDS from other causes. Although still scarce, present evidence on the application of lung protective ventilation in COVID-19-ARDS shows that it is indeed consistently applied in ICUs worldwide with a possible signal towards better survival at least in one study. The levels of positive end-expiratory pressure (PEEP) usually applied in these patients are higher than in 'classical' ARDS, proposing once again the issue of PEEP personalization in hypoxemic patients. In the absence of robust evidence, careful evaluation of the patient is needed, and empiric settings should be oriented towards lower levels of PEEP. SUMMARY: According to the present evidence, a lung protective strategy based on low tidal volume and plateau pressures is indicated in COVID-19-ARDS as in ARDS from other causes; however, there are still uncertainties on the appropriate levels of PEEP.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , Lung , Positive-Pressure Respiration , Respiratory Distress Syndrome/therapy , SARS-CoV-2 , Tidal Volume
10.
Am J Respir Crit Care Med ; 205(4): 431-439, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1551111

ABSTRACT

Rationale: The "Berlin definition" of acute respiratory distress syndrome (ARDS) does not allow inclusion of patients receiving high-flow nasal oxygen (HFNO). However, several articles have proposed that criteria for defining ARDS should be broadened to allow inclusion of patients receiving HFNO. Objectives: To compare the proportion of patients fulfilling ARDS criteria during HFNO and soon after intubation, and 28-day mortality between patients treated exclusively with HFNO and patients transitioned from HFNO to invasive mechanical ventilation (IMV). Methods: From previously published studies, we analyzed patients with coronavirus disease (COVID-19) who had PaO2/FiO2 of ⩽300 while treated with ⩾40 L/min HFNO, or noninvasive ventilation (NIV) with positive end-expiratory pressure of ⩾5 cm H2O (comparator). In patients transitioned from HFNO/NIV to invasive mechanical ventilation (IMV), we compared ARDS severity during HFNO/NIV and soon after IMV. We compared 28-day mortality in patients treated exclusively with HFNO/NIV versus patients transitioned to IMV. Measurements and Main Results: We analyzed 184 and 131 patients receiving HFNO or NIV, respectively. A total of 112 HFNO and 69 NIV patients transitioned to IMV. Of those, 104 (92.9%) patients on HFNO and 66 (95.7%) on NIV continued to have PaO2/FiO2 ⩽300 under IMV. Twenty-eight-day mortality in patients who remained on HFNO was 4.2% (3/72), whereas in patients transitioned from HFNO to IMV, it was 28.6% (32/112) (P < 0.001). Twenty-eight-day mortality in patients who remained on NIV was 1.6% (1/62), whereas in patients who transitioned from NIV to IMV, it was 44.9% (31/69) (P < 0.001). Overall mortality was 19.0% (35/184) and 24.4% (32/131) for HFNO and NIV, respectively (P = 0.2479). Conclusions: Broadening the ARDS definition to include patients on HFNO with PaO2/FiO2 ⩽300 may identify patients at earlier stages of disease but with lower mortality.


Subject(s)
COVID-19/therapy , Hypoxia/therapy , Oxygen Inhalation Therapy/methods , Respiratory Distress Syndrome/therapy , Aged , COVID-19/mortality , COVID-19/physiopathology , Female , Humans , Hypoxia/diagnosis , Hypoxia/mortality , Hypoxia/virology , Italy/epidemiology , Male , Middle Aged , Oxygen Inhalation Therapy/mortality , Patient Acuity , Respiration, Artificial/methods , Respiration, Artificial/mortality , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/mortality , Respiratory Distress Syndrome/virology , Treatment Outcome
11.
Respir Med ; 189: 106665, 2021.
Article in English | MEDLINE | ID: covidwho-1475040

ABSTRACT

BACKGROUND: Health-related quality of life (HRQoL) impairment is often reported among COVID-19 ICU survivors, and little is known about their long-term outcomes. We evaluated the HRQoL trajectories between 3 months and 1 year after ICU discharge, the factors influencing these trajectories and the presence of clusters of HRQoL profiles in a population of COVID-19 patients who underwent invasive mechanical ventilation (IMV). Moreover, pathophysiological correlations of residual dyspnea were tested. METHODS: We followed up 178 survivors from 16 Italian ICUs up to one year after ICU discharge. HRQoL was investigated through the 15D instrument. Available pulmonary function tests (PFTs) and chest CT scans at 1 year were also collected. A linear mixed-effects model was adopted to identify factors associated with different HRQoL trajectories and a two-step cluster analysis was performed to identify HRQoL clusters. RESULTS: We found that HRQoL increased during the study period, especially for the significant increase of the physical dimensions, while the mental dimensions and dyspnea remained substantially unchanged. Four main 15D profiles were identified: full recovery (47.2%), bad recovery (5.1%) and two partial recovery clusters with mostly physical (9.6%) or mental (38.2%) dimensions affected. Gender, duration of IMV and number of comorbidities significantly influenced HRQoL trajectories. Persistent dyspnea was reported in 58.4% of patients, and weakly, but significantly, correlated with both DLCO and length of IMV. CONCLUSIONS: HRQoL impairment is frequent 1 year after ICU discharge, and the lowest recovery is found in the mental dimensions. Persistent dyspnea is often reported and weakly correlated with PFTs alterations. TRIAL REGISTRATION: NCT04411459.


Subject(s)
COVID-19/epidemiology , Intensive Care Units , Quality of Life , Respiration, Artificial , Respiratory Function Tests , Aged , Dyspnea/epidemiology , Female , Follow-Up Studies , Humans , Italy/epidemiology , Male , Middle Aged , Patient Discharge , Prospective Studies , Respiratory Distress Syndrome/epidemiology , Respiratory Distress Syndrome/therapy , Survivors
12.
Biomedicines ; 9(9)2021 Sep 15.
Article in English | MEDLINE | ID: covidwho-1408456

ABSTRACT

The synergic combination of D-dimer (as proxy of thrombotic/vascular injury) and static compliance (as proxy of parenchymal injury) in predicting mortality in COVID-19-ARDS has not been systematically evaluated. The objective is to determine whether the combination of elevated D-dimer and low static compliance can predict mortality in patients with COVID-19-ARDS. A "training sample" (March-June 2020) and a "testing sample" (September 2020-January 2021) of adult patients invasively ventilated for COVID-19-ARDS were collected in nine hospitals. D-dimer and compliance in the first 24 h were recorded. Study outcome was all-cause mortality at 28-days. Cut-offs for D-dimer and compliance were identified by receiver operating characteristic curve analysis. Mutually exclusive groups were selected using classification tree analysis with chi-square automatic interaction detection. Time to death in the resulting groups was estimated with Cox regression adjusted for SOFA, sex, age, PaO2/FiO2 ratio, and sample (training/testing). "Training" and "testing" samples amounted to 347 and 296 patients, respectively. Three groups were identified: D-dimer ≤ 1880 ng/mL (LD); D-dimer > 1880 ng/mL and compliance > 41 mL/cmH2O (LD-HC); D-dimer > 1880 ng/mL and compliance ≤ 41 mL/cmH2O (HD-LC). 28-days mortality progressively increased in the three groups (from 24% to 35% and 57% (training) and from 27% to 39% and 60% (testing), respectively; p < 0.01). Adjusted mortality was significantly higher in HD-LC group compared with LD (HR = 0.479, p < 0.001) and HD-HC (HR = 0.542, p < 0.01); no difference was found between LD and HD-HC. In conclusion, combination of high D-dimer and low static compliance identifies a clinical phenotype with high mortality in COVID-19-ARDS.

13.
Membranes (Basel) ; 11(7)2021 Jul 20.
Article in English | MEDLINE | ID: covidwho-1323302

ABSTRACT

During the COVID-19 pandemic, a shortage of mechanical ventilators was reported and ventilator sharing between patients was proposed as an ultimate solution. Two lung simulators were ventilated by one anesthesia machine connected through two respiratory circuits and T-pieces. Five different combinations of compliances (30-50 mL × cmH2O-1) and resistances (5-20 cmH2O × L-1 × s-1) were tested. The ventilation setting was: pressure-controlled ventilation, positive end-expiratory pressure 15 cmH2O, inspiratory pressure 10 cmH2O, respiratory rate 20 bpm. Pressures and flows from all the circuit sections have been recorded and analyzed. Simulated patients with equal compliance and resistance received similar ventilation. Compliance reduction from 50 to 30 mL × cmH2O-1 decreased the tidal volume (VT) by 32% (418 ± 49 vs. 285 ± 17 mL). The resistance increase from 5 to 20 cmH2O × L-1 × s-1 decreased VT by 22% (425 ± 69 vs. 331 ± 51 mL). The maximal alveolar pressure was lower at higher compliance and resistance values and decreased linearly with the time constant (r² = 0.80, p < 0.001). The minimum alveolar pressure ranged from 15.5 ± 0.04 to 16.57 ± 0.04 cmH2O. Cross-flows between the simulated patients have been recorded in all the tested combinations, during both the inspiratory and expiratory phases. The simultaneous ventilation of two patients with one ventilator may be unable to match individual patient's needs and has a high risk of cross-interference.

14.
JAMA ; 325(17): 1731-1743, 2021 05 04.
Article in English | MEDLINE | ID: covidwho-1241490

ABSTRACT

Importance: High-flow nasal oxygen is recommended as initial treatment for acute hypoxemic respiratory failure and is widely applied in patients with COVID-19. Objective: To assess whether helmet noninvasive ventilation can increase the days free of respiratory support in patients with COVID-19 compared with high-flow nasal oxygen alone. Design, Setting, and Participants: Multicenter randomized clinical trial in 4 intensive care units (ICUs) in Italy between October and December 2020, end of follow-up February 11, 2021, including 109 patients with COVID-19 and moderate to severe hypoxemic respiratory failure (ratio of partial pressure of arterial oxygen to fraction of inspired oxygen ≤200). Interventions: Participants were randomly assigned to receive continuous treatment with helmet noninvasive ventilation (positive end-expiratory pressure, 10-12 cm H2O; pressure support, 10-12 cm H2O) for at least 48 hours eventually followed by high-flow nasal oxygen (n = 54) or high-flow oxygen alone (60 L/min) (n = 55). Main Outcomes and Measures: The primary outcome was the number of days free of respiratory support within 28 days after enrollment. Secondary outcomes included the proportion of patients who required endotracheal intubation within 28 days from study enrollment, the number of days free of invasive mechanical ventilation at day 28, the number of days free of invasive mechanical ventilation at day 60, in-ICU mortality, in-hospital mortality, 28-day mortality, 60-day mortality, ICU length of stay, and hospital length of stay. Results: Among 110 patients who were randomized, 109 (99%) completed the trial (median age, 65 years [interquartile range {IQR}, 55-70]; 21 women [19%]). The median days free of respiratory support within 28 days after randomization were 20 (IQR, 0-25) in the helmet group and 18 (IQR, 0-22) in the high-flow nasal oxygen group, a difference that was not statistically significant (mean difference, 2 days [95% CI, -2 to 6]; P = .26). Of 9 prespecified secondary outcomes reported, 7 showed no significant difference. The rate of endotracheal intubation was significantly lower in the helmet group than in the high-flow nasal oxygen group (30% vs 51%; difference, -21% [95% CI, -38% to -3%]; P = .03). The median number of days free of invasive mechanical ventilation within 28 days was significantly higher in the helmet group than in the high-flow nasal oxygen group (28 [IQR, 13-28] vs 25 [IQR 4-28]; mean difference, 3 days [95% CI, 0-7]; P = .04). The rate of in-hospital mortality was 24% in the helmet group and 25% in the high-flow nasal oxygen group (absolute difference, -1% [95% CI, -17% to 15%]; P > .99). Conclusions and Relevance: Among patients with COVID-19 and moderate to severe hypoxemia, treatment with helmet noninvasive ventilation, compared with high-flow nasal oxygen, resulted in no significant difference in the number of days free of respiratory support within 28 days. Further research is warranted to determine effects on other outcomes, including the need for endotracheal intubation. Trial Registration: ClinicalTrials.gov Identifier: NCT04502576.


Subject(s)
COVID-19/complications , Intubation, Intratracheal/statistics & numerical data , Noninvasive Ventilation/instrumentation , Oxygen Inhalation Therapy/methods , Respiratory Insufficiency/therapy , Aged , COVID-19/mortality , COVID-19/therapy , Female , Hospital Mortality , Humans , Hypoxia/etiology , Male , Middle Aged , Noninvasive Ventilation/methods , Respiratory Insufficiency/etiology , Treatment Failure
15.
Sci Rep ; 11(1): 10103, 2021 05 12.
Article in English | MEDLINE | ID: covidwho-1226438

ABSTRACT

COVID-19 infection may predispose to secondary bacterial infection which is associated with poor clinical outcome especially among critically ill patients. We aimed to characterize the lower respiratory tract bacterial microbiome of COVID-19 critically ill patients in comparison to COVID-19-negative patients. We performed a 16S rRNA profiling on bronchoalveolar lavage (BAL) samples collected between April and May 2020 from 24 COVID-19 critically ill subjects and 24 patients with non-COVID-19 pneumonia. Lung microbiome of critically ill patients with COVID-19 was characterized by a different bacterial diversity (PERMANOVA on weighted and unweighted UniFrac Pr(> F) = 0.001) compared to COVID-19-negative patients with pneumonia. Pseudomonas alcaligenes, Clostridium hiranonis, Acinetobacter schindleri, Sphingobacterium spp., Acinetobacter spp. and Enterobacteriaceae, characterized lung microbiome of COVID-19 critically ill patients (LDA score > 2), while COVID-19-negative patients showed a higher abundance of lung commensal bacteria (Haemophilus influenzae, Veillonella dispar, Granulicatella spp., Porphyromonas spp., and Streptococcus spp.). The incidence rate (IR) of infections during COVID-19 pandemic showed a significant increase of carbapenem-resistant Acinetobacter baumannii (CR-Ab) infection. In conclusion, SARS-CoV-2 infection and antibiotic pressure may predispose critically ill patients to bacterial superinfection due to opportunistic multidrug resistant pathogens.


Subject(s)
Bacteria/isolation & purification , COVID-19/microbiology , Dysbiosis/microbiology , Lung/microbiology , Aged , Bronchoalveolar Lavage Fluid/microbiology , COVID-19/diagnosis , Critical Illness , Dysbiosis/complications , Female , Humans , Male , Microbiota , Middle Aged , SARS-CoV-2/isolation & purification
16.
Qual Life Res ; 30(10): 2805-2817, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1225004

ABSTRACT

PURPOSE: The onset of the coronavirus disease 19 (COVID-19) pandemic in Italy induced a dramatic increase in the need for intensive care unit (ICU) beds for a large proportion of patients affected by COVID-19-related acute respiratory distress syndrome (ARDS). The aim of the present study was to describe the health-related quality of life (HRQoL) at 90 days after ICU discharge in a cohort of COVID-19 patients undergoing invasive mechanical ventilation and to compare it with an age and sex-matched sample from the general Italian and Finnish populations. Moreover, the possible associations between clinical, demographic, social factors, and HRQoL were investigated. METHODS: COVID-19 ARDS survivors from 16 participating ICUs were followed up until 90 days after ICU discharge and the HRQoL was evaluated with the 15D instrument. A parallel cohort of age and sex-matched Italian population from the same geographic areas was interviewed and a third group of matched Finnish population was extracted from the Finnish 2011 National Health survey. A linear regression analysis was performed to evaluate potential associations between the evaluated factors and HRQoL. RESULTS: 205 patients answered to the questionnaire. HRQoL of the COVID-19 ARDS patients was significantly lower than the matched populations in both physical and mental dimensions. Age, sex, number of comorbidities, ARDS class, duration of invasive mechanical ventilation, and occupational status were found to be significant determinants of the 90 days HRQoL. Clinical severity at ICU admission was poorly correlated to HRQoL. CONCLUSION: COVID-19-related ARDS survivors at 90 days after ICU discharge present a significant reduction both on physical and psychological dimensions of HRQoL measured with the 15D instrument. TRIAL REGISTRATION: NCT04411459.


Subject(s)
COVID-19 , Critical Illness , Patient Discharge , Quality of Life , Respiratory Distress Syndrome , Survivors , Aged , Female , Follow-Up Studies , Humans , Intensive Care Units , Male , Middle Aged , Quality of Life/psychology , SARS-CoV-2/pathogenicity , Severity of Illness Index
18.
Ann Intensive Care ; 11(1): 63, 2021 Apr 26.
Article in English | MEDLINE | ID: covidwho-1202278

ABSTRACT

BACKGROUND: Prone positioning (PP) has been used to improve oxygenation in patients affected by the SARS-CoV-2 disease (COVID-19). Several mechanisms, including lung recruitment and better lung ventilation/perfusion matching, make a relevant rational for using PP. However, not all patients maintain the oxygenation improvement after returning to supine position. Nevertheless, no evidence exists that a sustained oxygenation response after PP is associated to outcome in mechanically ventilated COVID-19 patients. We analyzed data from 191 patients affected by COVID-19-related acute respiratory distress syndrome undergoing PP for clinical reasons. Clinical history, severity scores and respiratory mechanics were analyzed. Patients were classified as responders (≥ median PaO2/FiO2 variation) or non-responders (< median PaO2/FiO2 variation) based on the PaO2/FiO2 percentage change between pre-proning and 1 to 3 h after re-supination in the first prone positioning session. Differences among the groups in physiological variables, complication rates and outcome were evaluated. A competing risk regression analysis was conducted to evaluate if PaO2/FiO2 response after the first pronation cycle was associated to liberation from mechanical ventilation. RESULTS: The median PaO2/FiO2 variation after the first PP cycle was 49 [19-100%] and no differences were found in demographics, comorbidities, ventilatory treatment and PaO2/FiO2 before PP between responders (96/191) and non-responders (95/191). Despite no differences in ICU length of stay, non-responders had a higher rate of tracheostomy (70.5% vs 47.9, P = 0.008) and mortality (53.7% vs 33.3%, P = 0.006), as compared to responders. Moreover, oxygenation response after the first PP was independently associated to liberation from mechanical ventilation at 28 days and was increasingly higher being higher the oxygenation response to PP. CONCLUSIONS: Sustained oxygenation improvement after first PP session is independently associated to improved survival and reduced duration of mechanical ventilation in critically ill COVID-19 patients.

19.
Chest ; 160(2): 454-465, 2021 08.
Article in English | MEDLINE | ID: covidwho-1184884

ABSTRACT

BACKGROUND: Few small studies have described hospital-acquired infections (HAIs) occurring in patients with COVID-19. RESEARCH QUESTION: What characteristics in critically ill patients with COVID-19 are associated with HAIs and how are HAIs associated with outcomes in these patients? STUDY DESIGN AND METHODS: Multicenter retrospective analysis of prospectively collected data including adult patients with severe COVID-19 admitted to eight Italian hub hospitals from February 20, 2020, through May 20, 2020. Descriptive statistics and univariate and multivariate Weibull regression models were used to assess incidence, microbial cause, resistance patterns, risk factors (ie, demographics, comorbidities, exposure to medication), and impact on outcomes (ie, ICU discharge, length of ICU and hospital stays, and duration of mechanical ventilation) of microbiologically confirmed HAIs. RESULTS: Of the 774 included patients, 359 patients (46%) demonstrated 759 HAIs (44.7 infections/1,000 ICU patient-days; 35% multidrug-resistant [MDR] bacteria). Ventilator-associated pneumonia (VAP; n = 389 [50%]), bloodstream infections (BSIs; n = 183 [34%]), and catheter-related BSIs (n = 74 [10%]) were the most frequent HAIs, with 26.0 (95% CI, 23.6-28.8) VAPs per 1,000 intubation-days, 11.7 (95% CI, 10.1-13.5) BSIs per 1,000 ICU patient-days, and 4.7 (95% CI, 3.8-5.9) catheter-related BSIs per 1,000 ICU patient-days. Gram-negative bacteria (especially Enterobacterales) and Staphylococcus aureus caused 64% and 28% of cases of VAP, respectively. Variables independently associated with infection were age, positive end expiratory pressure, and treatment with broad-spectrum antibiotics at admission. Two hundred thirty-four patients (30%) died in the ICU (15.3 deaths/1,000 ICU patient-days). Patients with HAIs complicated by septic shock showed an almost doubled mortality rate (52% vs 29%), whereas noncomplicated infections did not affect mortality. HAIs prolonged mechanical ventilation (median, 24 days [interquartile range (IQR), 14-39 days] vs 9 days [IQR, 5-13 days]; P < .001), ICU stay (24 days [IQR, 16-41 days] vs 9 days [IQR, 6-14 days]; P = .003), and hospital stay (42 days [IQR, 25-59 days] vs 23 days [IQR, 13-34 days]; P < .001). INTERPRETATION: Critically ill patients with COVID-19 are at high risk for HAIs, especially VAPs and BSIs resulting from MDR organisms. HAIs prolong mechanical ventilation and hospitalization, and HAIs complicated by septic shock almost double mortality. TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT04388670; URL: www.clinicaltrials.gov.


Subject(s)
COVID-19/complications , Cross Infection/complications , Aged , Critical Illness , Cross Infection/epidemiology , Female , Humans , Male , Middle Aged , Pneumonia, Ventilator-Associated/complications , Pneumonia, Ventilator-Associated/epidemiology , Retrospective Studies , Sepsis/complications , Sepsis/epidemiology
20.
Crit Care ; 25(1): 128, 2021 04 06.
Article in English | MEDLINE | ID: covidwho-1169981

ABSTRACT

BACKGROUND: Limited data are available on the use of prone position in intubated, invasively ventilated patients with Coronavirus disease-19 (COVID-19). Aim of this study is to investigate the use and effect of prone position in this population during the first 2020 pandemic wave. METHODS: Retrospective, multicentre, national cohort study conducted between February 24 and June 14, 2020, in 24 Italian Intensive Care Units (ICU) on adult patients needing invasive mechanical ventilation for respiratory failure caused by COVID-19. Clinical data were collected on the day of ICU admission. Information regarding the use of prone position was collected daily. Follow-up for patient outcomes was performed on July 15, 2020. The respiratory effects of the first prone position were studied in a subset of 78 patients. Patients were classified as Oxygen Responders if the PaO2/FiO2 ratio increased ≥ 20 mmHg during prone position and as Carbon Dioxide Responders if the ventilatory ratio was reduced during prone position. RESULTS: Of 1057 included patients, mild, moderate and severe ARDS was present in 15, 50 and 35% of patients, respectively, and had a resulting mortality of 25, 33 and 41%. Prone position was applied in 61% of the patients. Patients placed prone had a more severe disease and died significantly more (45% vs. 33%, p < 0.001). Overall, prone position induced a significant increase in PaO2/FiO2 ratio, while no change in respiratory system compliance or ventilatory ratio was observed. Seventy-eight % of the subset of 78 patients were Oxygen Responders. Non-Responders had a more severe respiratory failure and died more often in the ICU (65% vs. 38%, p = 0.047). Forty-seven % of patients were defined as Carbon Dioxide Responders. These patients were older and had more comorbidities; however, no difference in terms of ICU mortality was observed (51% vs. 37%, p = 0.189 for Carbon Dioxide Responders and Non-Responders, respectively). CONCLUSIONS: During the COVID-19 pandemic, prone position has been widely adopted to treat mechanically ventilated patients with respiratory failure. The majority of patients improved their oxygenation during prone position, most likely due to a better ventilation perfusion matching. TRIAL REGISTRATION: clinicaltrials.gov number: NCT04388670.


Subject(s)
COVID-19/therapy , Critical Care/standards , Intubation/standards , Patient Positioning/standards , Prone Position , Respiration, Artificial/standards , Supine Position , Aged , Cohort Studies , Female , Humans , Italy , Male , Middle Aged , Practice Guidelines as Topic , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL